Individual Differences in Strategy Choices: Good Students, Not-So-Good Students, and Perfectionists

Robert S. Siegler
Carnegie-Mellon University

SIEGLER, ROBERT S. Individual Differences in Strategy Choices: Good Students, Not-So-Good Students, and Perfectionists. CHILD DEVELOPMENT, 1988, 59, 833–851. Consistent individual differences were found in first graders' strategy choices in addition, subtraction, and reading (word identification). Differences were present along 2 dimensions: knowledge of problems and stringency of thresholds for stating retrieved answers. Cluster analyses indicated that children could be classified into 3 groups: good students, not-so-good students, and perfectionists. Perfectionists were children who had good knowledge of problems and set very high thresholds for stating retrieved answers, good students also had good knowledge of problems but set lower thresholds, and not-so-good students had less good knowledge of problems and set low thresholds. Differences among the 3 groups were evident on measures not included in the cluster analysis as well as measures that were. Further, the groups differed in standardized achievement test performance 4 months after the experiment in ways consistent with the experimental analysis. The pattern of individual differences was similar in 2 experiments with different samples of children and problems and different methods for assessing strategy use. The results illustrated how detailed cognitive models can contribute to understanding of individual differences.

The purpose of this article is to examine individual differences in children's strategy choices. In particular, the research focuses on consistencies in 6-year-olds' strategy choices on three tasks: addition, subtraction, and word identification (reading). The issues of greatest interest are what types of consistent individual differences exist in children's strategy choices; how such individual differences, if present, can be interpreted within the framework of a previously formulated model of children's strategy choice procedures; and how individual differences in children's strategy choices in the experimental situation relate to their standardized test performance.

If individual children knew only a single strategy for performing a given task, there would be no need to determine how they choose among multiple strategies, much less to examine individual differences in how they choose among the strategies. Recent studies, however, indicate that individual children and adults often use multiple strategies for solving a given problem. They do so in such diverse areas as referential communications (Kahan & Richards, 1986), series completion (LeFevre & Bisanz, 1986), addition and subtraction (Siegler & Shrage, 1984), question answering (Reder, 1987), and causal reasoning (Shultz, Fisher, Pratt, & Rulf, 1986).

The fact that people use diverse strategies is not a mere idiosyncracy of human cognition. Strategies differ in their accuracy, in the amounts of time needed for execution, in their memory demands, and in the range of problems to which they apply. Wise choices of strategies allow people to meet situational demands and to overcome limited knowledge and processing resources.

Even young children often exhibit considerable skill in choosing strategies. This skill is evident in their choices of whether to state a retrieved answer or to use a backup

This research was supported in part by grant HD-19011 from the National Institutes of Health and in part by grant 83-0050 from the National Institute of Education. Thanks are due to Miss Hawkins, Miss Ferry, and the teachers and students of University Park Elementary of Monroeville, PA, who made the research possible, as well as to Denise Wilk and Cathy Dennier, who conducted the experiment and analyzed the data. Special thanks to Jamie Campbell, who suggested many useful ideas about the research. Requests for reprints should be sent to Robert S. Siegler, Psychology Department, Carnegie-Mellon University, Pittsburgh, PA 15213.

[Child Development, 1988, 59, 833–851. © 1988 by the Society for Research in Child Development, Inc. All rights reserved. 0009-3920/88/5904-0003$01.00]
more slowly and less accurately. However, the magnitudes of the differences suggested that they also probably set lower confidence criteria. As shown in Figure 2, the good students used retrieval on 10% more trials than the not-so-good students. However, they were correct on 28% more of retrieval trials, and their solution times on retrieval trials were less than half as long. The combination of less peaked distributions and lower confidence criteria would produce these relations.

In sum, this analysis suggests that perfectionists set higher confidence criteria than good students, who in turn set higher confidence criteria than not-so-good students. It also suggests that both perfectionists and good students have more peaked distributions than not-so-good students.

Two factors limited the assuredness with which these conclusions could be drawn, however. First, although the dimensions that differentiated individual performance were suggested by the strategy choice model, the model did not predict the particular individual differences that emerged. Simply replicating the findings with a different sample of children and different specific problems therefore seemed desirable.

The second issue involved methods for assessing strategies. In Experiment 1, the distinction between use of backup strategies and use of retrieval was made solely on the basis of overt behavior. If children produced audible or visible behavior relevant to solving the problem between the time the problem was presented and the time when they stated the answer, they were classified as using a backup strategy; if not, they were classified as using retrieval. This classification procedure had been used effectively with preschoolers’ addition and subtraction in earlier studies (Siegler, 1987a; Siegler & Shrager, 1984) and therefore seemed reasonable in the present context. After Experiment 1 was conducted, however, another study (Siegler, 1987c) was conducted in which first graders were asked immediately after each addition problem how they had solved the problem. Results of this study provided two reasons for obtaining verbal reports of strategy use immediately following each problem. First, when asked how they had solved particular problems, the first graders often said that they used backup strategies on trials where they had not produced any overt behavior. Second, chronometric data strongly supported the validity of the children’s verbal reports. Solution time and error patterns differed sharply on trials where children reported using different strategies, and the pattern of times yielded when children said they used each strategy conformed to what would have been expected from the operations inherently involved in executing that strategy.

Thus, it seems likely that relying solely on overt behavior as an index of backup strategy use underestimated the frequency of backup strategies and overestimated the frequency of retrieval. Further, it seemed possible that apparent differences among the three groups in percent use of retrieval actually reflected different rates of use of covert rather than overt backup strategies. Fortunately, the above-described results of Siegler (1987c) suggested that immediately retrospective verbal reports, when used together with videotapes of children’s ongoing performance, would lead to more accurate classifications of strategy use. Therefore, both types of data were obtained in Experiment 2 and used to assess children’s strategies.

Experiment 2

Method

Participants.—The children were 34 first graders, mean CA = 79 months (SD = 4.5 months). The group included 14 boys and 20 girls. They attended the same middle-class public school as the children in Experiment 1. The experimenter was a 22-year-old female research assistant.

Problems.—The problems used in this experiment were of similar numerical sizes and letter lengths as those used in Experiment 1 but differed in the particular problems and words. The 21 addition problems had larger addend sizes ranging from 2 to 14, smaller addend sizes from 1 to 6, and sums from 3 to 18. The 21 subtraction items had minuends ranging from 3 to 18, subtrahends from 2 to 8, and differences from 1 to 14. The 50 reading words ranged from two letters (“is”) to nine letters (“breakfast”). As in Experiment 1, each word was printed individually on a 4 × 6-inch index card. Also as in Experiment 1, roughly 70% of the reading words and arithmetic problems had been encountered by the children in their textbooks; the other 30% were also sampled from the text but appeared in lessons that the class had not yet studied. The Metropolitan Achievement Test was taken by students 5 months after the experimental session. The same subtests were examined as in Experiment 1.

Procedure.—The procedure was almost identical to that followed in the first experiment. The only difference involved the
TABLE 4
SPEED AND ACCURACY ON EACH TASK: EXPERIMENT 2

<table>
<thead>
<tr>
<th>Task</th>
<th>% Retrieval</th>
<th>% Correct</th>
<th>Median RT</th>
<th>% Correct, Backup Strategy Trials</th>
<th>Median RT, Backup Strategy Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>49</td>
<td>84</td>
<td>5.4</td>
<td>92</td>
<td>3.6</td>
</tr>
<tr>
<td>Subtraction</td>
<td>35</td>
<td>70</td>
<td>10.7</td>
<td>85</td>
<td>3.1</td>
</tr>
<tr>
<td>Reading</td>
<td>52</td>
<td>54</td>
<td>7.6</td>
<td>82</td>
<td>1.9</td>
</tr>
</tbody>
</table>

request that children verbally describe the strategy that they used immediately after answering the problems. Children were told after the first problem, "We're interested in knowing how children your age figure out the answers to these problems. Tell me, how did you figure out the answer to that problem?" The question, "How did you figure out the answer to that problem?" was repeated after each item unless the child volunteered the information before being asked, which children usually did after a few items. If the child's description was unclear, the experimenter would ask one or more follow-up questions. For example, if the child simply said "I counted," the experimenter would ask, "What number did you begin counting on?"

RESULTS AND DISCUSSION

Reliability of scoring of strategies using verbal reports as well as overt behavior was high. The two raters agreed on 99% of trials on the addition task, 97% of trials on the subtraction task, and 100% of trials on the word identification task. Cases of disagreement were resolved through discussion by the two raters.

Performance on Each Task

Averaged across all trials on all three tasks, speed and accuracy in Experiment 2 were similar to speed and accuracy in Experiment 1. Mean percent correct was 69%, versus 73% in Experiment 1. Median solution time was 7.9 sec, versus 8.0 sec in Experiment 1. In general, performance on the two arithmetic tasks was faster and more accurate in Experiment 2; performance on the word identification task was slower and less accurate (Table 4).

Use of verbal reports as well as overt behavior for strategy classification in Experiment 2 appeared to allow accurate detection of numerous covertly executed backup strategies. One consequence of correctly classify-
TABLE 5
CORRELATIONS OF INDIVIDUAL CHILDREN’S PERFORMANCE IN ADDITION,
SUBTRACTION, AND READING: EXPERIMENT 2

<table>
<thead>
<tr>
<th>Measure</th>
<th>Addition-Subtraction</th>
<th>Addition-Reading</th>
<th>Subtraction-Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>% retrieval</td>
<td>.76</td>
<td>.62</td>
<td>.48</td>
</tr>
<tr>
<td>% correct</td>
<td>.60</td>
<td>.28</td>
<td>.57</td>
</tr>
<tr>
<td>Mean RT</td>
<td>.70</td>
<td>.15</td>
<td>.24</td>
</tr>
<tr>
<td>% correct on retrieval trials</td>
<td>.52</td>
<td>.26</td>
<td>.47</td>
</tr>
<tr>
<td>Mean RT on retrieval trials</td>
<td>.43</td>
<td>.30</td>
<td>.68</td>
</tr>
<tr>
<td>Mean RT on backup strategy trials</td>
<td>.91</td>
<td>.41</td>
<td>.36</td>
</tr>
<tr>
<td></td>
<td>.08</td>
<td>.44</td>
<td>.30</td>
</tr>
</tbody>
</table>

NOTE.—All correlations are Pearson product-moment r’s. With df = 34, r’s > .33 are significant for p < .05.

Good Students, Not-So-Good Students, and Perfectionists

As in Experiment 1, a cluster analysis was conducted on each child’s percent retrieval, percent correct retrieval, and percent correct backup strategy use on each of the three tasks. Again, the three-group solution was considerably superior to the two-group solution. Separate ANOVAs on each variable indicated that in the two-group solution, the groups differed significantly on five of the nine variables. In the three-group solution, the groups differed significantly on all nine variables.

Next, to obtain converging validity for the results of the cluster analysis, performance of children in the three groups was contrasted on six measures that were not used as input to the analysis. These measures involved solution times on retrieval trials and solution times on backup strategy trials on each of the three tasks. Performance of the three groups differed significantly on four of the six measures: solution times on backup strategy trials on all three tasks, and solution times on retrieval trials in subtraction. Performance on the other two measures—solution times on retrieval trials in addition and reading—showed a similar pattern, and the differences among groups approached significance (p’s < .06 and .07, respectively).

The three groups yielded by the cluster analysis were sufficiently similar to those yielded by the analysis of the Experiment 1 data that it seemed appropriate again to call them the perfectionists, good students, and not-so-good students (Fig. 3). There were 14 children in the perfectionist group, 12 in the good student group, and eight in the not-so-good student group.

Differences between good students and not-so-good students closely followed those in Experiment 1. Tukey HSD tests indicated that the good students were correct significantly more often on both retrieval trials and backup strategy trials on all three tasks, that they were faster on backup strategy trials on all three tasks, that they were faster on retrieval trials on both the addition and subtraction tasks, and that they retrieved more often on both the addition and word identification tasks. All 15 of the differences were in the expected direction, and 13 of the 15 differences were significant.

The relation between the perfectionists’ performance and that of children in the other two groups also resembled that of children in Experiment 1. Relative to the not-so-good students, the perfectionists were significantly more accurate on retrieval trials on all three tasks and on backup strategy trials on the addition and subtraction tasks. They also were significantly faster than the not-so-good students on backup strategy trials on all three tasks and on retrieval trials on the subtraction task. Despite this greater speed and accuracy, the perfectionists used retrieval significantly less often on the addition and subtraction tasks and nonsignificantly less often on the word identification task. Again, all 15 of the differences were in the expected direction; 11 of the 15 were significant.

The relation between performance of good students and perfectionists was similar though not identical to that in Experiment 1. As in Experiment 1, the speed and accuracy of the perfectionists and the good students was similar; only one of the 12 differences was significant (the good students were more accurate on backup strategy trials in word identification). Also as previously, the main difference between perfectionists and good students was that perfectionists used retrieval significantly less often than good students.
The differences were significant on all three tasks. However, unlike the case in Experiment 1, where directional differences in speed and accuracy of perfectionists and good students tended to favor the perfectionists, in Experiment 2 directional differences in speed and accuracy tended to favor the good students (Fig. 3).

Analyses like those in Experiment 1 were also conducted to determine whether differences among the three groups' speed and accuracy on retrieval trials could be explained by differences in the problems on which they used retrieval. The results indicated that the problems on which the perfectionists used retrieval were somewhat easier than the problems on which children in the other two groups did so. Averaged across the three tasks, the expected percent correct retrieval for the problems on which the perfectionists, good students, and not-so-good students used retrieval was 91%, 84%, and 85%, respectively. The three groups' observed percent correct retrieval was 92%, 90%, and 72%, respectively. Thus, the good students' percent correct retrieval exceeded by 6% the level expected from the problems on which they used retrieval, the perfectionists' percent correct retrieval exceeded by 1% that expected from the problems on which they used retrieval, and the not-so-good students' percent correct retrieval was 13% lower than would have been expected on the basis of the problems on which they used retrieval. Thus, after correcting for differences in problem difficulty, good students retrieved correctly on somewhat more trials (5%) than perfectionists, and both groups retrieved correctly on considerably more trials than not-so-good students (20% and 14%, respectively).

Sex differences.—As in Experiment 1, there were no significant sex differences among the three groups, χ²(2) < 1. Girls constituted 50% of the perfectionists, 67% of the
TABLE 6

<table>
<thead>
<tr>
<th>Measure</th>
<th>Perfectionists</th>
<th>Good Students</th>
<th>Not-So-Good Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total math</td>
<td>83</td>
<td>90</td>
<td>53</td>
</tr>
<tr>
<td>Math computation</td>
<td>78</td>
<td>88</td>
<td>54</td>
</tr>
<tr>
<td>Math problem solving</td>
<td>81</td>
<td>82</td>
<td>46</td>
</tr>
<tr>
<td>Total reading</td>
<td>61</td>
<td>88</td>
<td>45</td>
</tr>
<tr>
<td>Word recognition</td>
<td>62</td>
<td>81</td>
<td>43</td>
</tr>
<tr>
<td>Reading comprehension</td>
<td>60</td>
<td>86</td>
<td>48</td>
</tr>
</tbody>
</table>

good students, and 62% of the not-so-good students.

Achievement test performance.—As in Experiment 1, children's Metropolitan Achievement Test scores were used to provide a measure of the external validity of the classifications of children into three groups. The scores of 32 of the 34 children were used for this validation; one of the not-so-good students had missing subtests, and one of the perfectionists' scores included several subtests that could only be classified as outliers (e.g., a score more than 5 SD below the mean of the other children in the experiment).

The overall level of performance on the standardized tests was similar to that in Experiment 1. The mean total mathematics score was at the seventy-ninth percentile of the standardization sample, and the mean total reading score was at the sixty-eighth percentile (vs. the seventy-second and seventy-fourth percentiles in Experiment 1).

Also as in Experiment 1, differences between the achievement test scores of children in the three groups paralleled those in the experiment. ANOVAs indicated significant differences among the three groups on each of the six subtests (Table 6). The good students' average score on the six subtests ranged from the eighty-first to the ninetieth percentile, the perfectionists' average scores ranged from the sixtieth to the eighty-third percentile, and the not-so-good students' average scores ranged from the forty-third to the fifty-fourth percentile. The HSD comparisons indicated that the differences between good and not-so-good students were significant on all six measures. Differences between perfectionists and not-so-good students also were significant on the three mathematics achievement scales; on the three reading scales, the perfectionists scored higher, but none of the differences was significant. Finally, the good students scored significantly higher than the perfectionists on the reading comprehension and overall reading measures and scored nonsignificantly higher on the other four measures.

Interpreting the pattern of individual differences.—As in Experiment 1, differences among the groups labeled perfectionists, good students, and not-so-good students can be interpreted in terms of varying status on two underlying dimensions: stringency of confidence criteria and peakedness of distributions of associations. In particular, the children labeled perfectionists are viewed as having relatively peaked distributions and setting very high confidence criteria, the children labeled good students are also viewed as having relatively peaked distributions but setting less high confidence criteria, and the not-so-good students are viewed as children whose distributions are not very peaked and who do not set very high confidence criteria.

Differences in peakedness of distributions are especially evident in comparing the performance of the good and not-so-good students. The good students were superior on every measure that the model suggests is influenced by peakedness. They used retrieval more often on all three tasks, they were faster on retrieval trials on all three tasks, and they were more accurate on retrieval trials on all three tasks. The differences in speed and accuracy of performance on retrieval trials could not be attributed to differences in difficulty of problems where retrieval was used because the problems on which the good students used retrieval were equal in difficulty of retrieving correctly to those on which the not-so-good students did.

The perfectionists also appeared to have more peaked distributions than the not-so-good students. They performed more quickly and more accurately on retrieval trials on all three tasks. A portion of these differences was due to differences in problem difficulty; however, even after correcting for problem
difficulty, the perfectionists still retrieved considerably more accurately than the not-so-good students.

The good students' and perfectionists' high percentage of correct retrieval, 90% and 92%, respectively, suggested that both possessed peaked distributions on the problems they were presented. There were no significant differences between the two groups' speed and accuracy on retrieval trials. When problem difficulty was considered, directional differences tended to favor the good students. The safest conclusion, though, seems to be that children in both groups had relatively peaked distributions of associations, and that the degree of peakedness did not differ substantially.

Now consider differences in confidence criteria. The clearest contrast is in the performance of perfectionists and not-so-good students. As noted above, the perfectionists appeared to have more peaked distributions. However, the perfectionists used retrieval significantly less often. The pattern of differences between the two groups is difficult to explain without reference to some type of difference in threshold for stating retrieved answers.

The perfectionists also seemed to set higher confidence criteria than the good students. The good students appeared to possess slightly more peaked distributions of associations; when difficulty of problems on which they used retrieval was held constant, they were correct on 5% more trials. However, the difference in the two groups' percent use of retrieval was out of proportion to this small difference in peakedness. The good students used retrieval on 66% of trials, whereas the perfectionists used it on only 28%. None of the six differences between the two groups' speed and accuracy on retrieval trials was significant, but all three differences in percent use of retrieval were.

It was unclear whether the good students set higher confidence criteria than the not-so-good students. As noted already, the good students had more peaked distributions than the not-so-good students; they used retrieval more often, and were faster and more accurate than the not-so-good students on retrieval (and backup strategy) trials. Under these circumstances, detecting differences in confidence criteria requires a disproportion in the degree of difference on different measures. Whether such a disproportion existed was unclear. In terms of absolute percent retrieval and absolute percent correct retrieval, differences between the two groups were entirely proportional. The good students used retrieval on 20% more trials; they retrieved correctly on 19% more trials. There were no differences in problem difficulty to consider. However, solution times on retrieval trials of the two groups did seem disproportional; the mean solution time of the good students was 2.5 sec, versus 5.1 sec for the not-so-good students.

The main findings, though, were clear. As in Experiment 1, one group of children possessed peaked distributions and set very high confidence criteria, another group of children also possessed peaked distributions but set lower confidence criteria, and a third group of children possessed less peaked distributions than children in the other two groups and set low confidence criteria. Under these circumstances, it appeared reasonable to refer to the three groups by the same names as the groups in Experiment 1: perfectionists, good students, and not-so-good students.

General Discussion

The results of these experiments indicated that clear individual differences exist in first graders' strategy choices in addition, subtraction, and word identification. Differences were evident on two dimensions: knowledge of problems and thresholds for stating retrieved answers. Performance on standardized achievement tests lent external validity to the diagnoses of individual differences based on performance in the experimental situation. The basic depiction of individual differences was stable across two sets of problems, two groups of children, and two strategy assessment methods, one using verbal reports and one not doing so. Some of the issues raised by these findings are discussed below.

Generality.—The strategy choice examined in this study, the choice between statement of a retrieved answer and use of a backup strategy, is an extremely common one. It is not limited to arithmetic and word identification. Rather, it must be made on any task where people have enough experience with items to make retrieval of an answer a possibility and where they also possess one or more strategies to use if they cannot retrieve the answer. Some such choices, such as those involved in addition and subtraction, involve decisions between statement of a retrieved answer and use of an algorithmic procedure that always yields the correct answer if executed correctly. Three examples of such retrieval versus algorithmic backup strategy choices are deciding whether to tell time by
recognizing the clock setting or by counting from the hour, generating the number of days in June from memory or by reciting "30 days hath September," and deciding whether to write down a just-looked-up phone number or to simply keep it in memory. A special case of such algorithmic backup strategies involves reference books. By providing atlases, baseball record books, cookbooks, dictionaries, encyclopedias, farmers' almanacs, and myriad other sources, our culture enhances our opportunity to use algorithmic backup strategies when we otherwise would be at the mercy of our memories.

Other choices between retrieval and backup strategies involve nonalgorithmic backup strategies, where correct execution of the backup strategy does not guarantee success. Use of decoding on the word identification task in the present experiment is one such example; others include retrieving a spelling or relying on sound-symbol correspondences, trying to just remember a phone number versus rehearsing it, and remembering a recipe versus repeatedly tasting and seeing what the dish seems to need.

Thus, people often choose between stating retrieved answers and using backup strategies. The general similarity of the strategy choice does not guarantee that individual differences in choices on these varied tasks would parallel those in addition, subtraction, and word identification. However, it does seem likely that individual differences on these tasks could be analyzed in terms of the same dimensions as appeared to influence choices in the present study—knowledge of problems and stringency of confidence criteria.

Relations to other individual difference constructs.—The present study related individual differences in the experimental situation to individual differences in a standardized test situation. Both similarities and differences were apparent. One similarity was in the contrast between perfectionists and good students, on the one hand, and not-so-good students on the other. In both situations, performance of the perfectionists and good students was superior. The relation of the performance of the perfectionists to that of the good students, however, differed in the two situations. Although the two groups were comparable in achievement test performance, their strategies in the experimental situation differed substantially.

Both the similarities and the differences between analyses of standardized test and experimental performance can be interpreted straightforwardly. Individual differences detected in the experimental situation involved two dimensions: differences in knowledge of problems and differences in criteria for stating retrieved answers. Individual differences detected on the achievement tests involved only the first of these, differences in knowledge. This view explains why both experimental and standardized test performance would discriminate between not-so-good students and children in the other two groups, where the main difference is one of knowledge. Both analyses are sensitive to such differences in knowledge. It also explains why only the analysis of performance in the experimental situation would discriminate between perfectionists and good students, where the main difference is not one of knowledge but rather of confidence criteria, or more generally, cognitive style. As these differences between good students and perfectionists illustrate, there is more than one way to be smart.

The dimensions of individual differences that emerged in the present study seem intuitively to be related to another individual difference construct, reflectivity-impulsivity (Kagan, Rossman, Day, Albert, & Phillips, 1964). Kogan's (1983) definition of reflectivity-impulsivity as "the extent to which a child delays a response in the course of searching for the correct alternative" (p. 672) is clearly akin to the role of the confidence criterion in the decision whether to state a retrieved answer. Salkind and Wright's (1977) hypothesis that reflective and impulsive children differ on two dimensions, efficiency of information processing and impulsivity, seems especially similar to the present view of children as differing in knowledge of problems and confidence criteria.

There are also dissimilarities between the two analyses of individual differences. The most obvious is the existence of three rather than two groups in the present analysis. One likely reason for this dissimilarity is methodological. Classifications of reflectivity-impulsivity usually are based on median splits on speed and accuracy measures. Only children in two of the four cells created by the median splits (slow/accurate and fast/inaccurate) are typically examined, despite the increasing recognition that the other cells are also populated fairly heavily (Kogan, 1983). The present clustering analyses, in which no particular form was forced on the groupings of children, indicated that in these domains, at least, many children (the good students) have
high knowledge yet do not set especially high confidence criteria.

A second source of dissimilarities concerns the types of tasks that are studied. The tasks examined here are ones where children have considerable knowledge and experience. It seems likely that in any domain in which knowledge plays a large role, solution times and errors are likely to be positively correlated, as they were in the present study (r’s = .3 to .6 on most measures). In contrast, in the task most often used to measure reflectivity-impulsivity, the Matching Familiar Figures Test, prior knowledge plays no direct role, and speed and accuracy correlate negatively, about −.3 to −.6 (Messer, 1976).

These differences notwithstanding, it seems desirable to study empirically the relation between the types of individual differences identified here and on measures of reflectivity-impulsivity. Particularly intriguing is whether perfectionists and reflectives tend to be the same children, and whether not-so-good students and impulsives tend to be the same.

Development of individual differences in strategy choices.—Given that children differ in peakedness of distributions and confidence criteria, how might such differences develop? One likely contributor to differences in peakedness is accuracy of execution of backup strategies. Within the present strategy choice model, the more accurately that children execute backup strategies, the more peaked their distributions of associations become. Consistent with this assumption, on all three tasks in both experiments of this study, a child’s percent correct in executing backup strategies correlated positively and significantly with the child’s retrieval accuracy. In Experiment 1, the correlations were $r = .43$ for addition, $r = .55$ for subtraction, and $r = .57$ for reading. In Experiment 2, the correlations were $r = .42$ in addition, $r = .47$ in subtraction, and $r = .52$ in reading. In both experiments, perfectionists and good students were significantly more accurate than not-so-good students in executing backup strategies on addition and subtraction problems; the direction of the difference was the same in word identification. Beyond the context of the present experiments, individual differences in the backup strategy of sounding out words have been found to be an excellent predictor of individual differences in psychometrically assessed reading ability in the early grades (Curtis, 1980). Thus, ability to accurately execute backup strategies seems likely to contribute to the acquisition of peaked distributions of associations.

An educational implication of this view is that it might be useful to teach children, particularly not-so-good students, to more accurately execute backup strategies. This seems a relatively uncontroversial conclusion with regard to word identification, where decoding instruction is generally viewed as useful (Perfetti, 1985), especially for low-ability students (Chall, 1979). It seems more controversial in arithmetic, where many parents and teachers discourage children from using backup strategies such as counting fingers (Siegler & Shrager, 1984). However, the logic is similar. Teaching children to execute backup strategies more accurately affords them more opportunities to learn the correct answer (i.e., to build distributions with strong peaks at the correct answer). It also reduces the likelihood of associating incorrect answers, produced by faulty execution of backup strategies, with the problem. This logic, the positive correlations between accurate execution of backup strategies and retrieval accuracy, and the encouraging results of teaching accurate execution of word identification backup strategies, all argue for testing the effects of teaching children to more accurately execute backup strategies in arithmetic as well as in reading.

Less is known about the development of confidence criteria. One possibility is that setting of confidence criteria responds to previous experience using backup strategies. Use of backup strategies is more time-consuming than retrieval. If the backup strategies result in consistently successful performance, children may find it worthwhile to set high criteria, which will lead to their using backup strategies relatively often. If the backup strategies do not consistently yield correct performance, however, children may not find it worthwhile to take the greater time needed to use them. This interpretation is consistent with the finding that the not-so-good students execute backup strategies the least accurately and that they also set the lowest confidence criteria of children in the three groups. The view leads to the testable prediction that teaching children to more accurately execute backup strategies would also lead to their setting higher confidence criteria, resulting in more, as well as more accurate, use of backup strategies.

Cognitive models and individual differences.—The present research on individual differences was guided by a previously for-
mulated cognitive model. Within the model, the two main influences on choices of whether to state a retrieved answer to a problem are the peakedness of distributions of associations on different problems and the stringency of confidence criteria. Data from the present study indicate that variability along these two dimensions also contributes to individual differences, specifically, differences in first graders' addition, subtraction, and word identification. The individual differences identified in the experimental situations were related to those evident on achievement tests but went beyond them to capture differences not apparent in the standardized test scores. The findings illustrate how detailed cognitive models can contribute to understanding of individual differences.

References

